Visualizing search results and document collections using topic maps

نویسندگان

  • David Newman
  • Timothy Baldwin
  • Lawrence Cavedon
  • Eric Huang
  • Sarvnaz Karimi
  • David Martínez
  • Falk Scholer
  • Justin Zobel
چکیده

This paper explores visualizations of document collections, which we call topic maps. Our topic maps are based on a topic model of the document collection, where the topic model is used to determine the semantic content of each document. Using two collections of search results, we show how topic maps reveal the semantic structure of a collection and visually communicate the diversity of content in the collection. We describe techniques for assessing the validity and accuracy of topic maps, and discuss the challenge of producing useful two-dimensional maps of documents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newman, David, Timothy Baldwin, Lawrence Cavedon, Sarvnaz Karimi, David Martinez and Justin Zobel (2010) Visualizing document collections and search results using topic mapping, Journal of Web Semantics 8(2-3), pp. 169¡1⁄2175

This paper explores visualizations of document collections, which we call topic maps. Our topic maps are based on a topic model of the document collection, where the topic model is used to determine the semantic content of each document. Using two collections of search results, we show how topic maps reveal the semantic structure of a collection and visually communicate the diversity of content...

متن کامل

Automatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation

Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...

متن کامل

Contextual Maps for Browsing Huge Document Collections

The increasing number of documents returned by search engines for typical requests makes it necessary to look for new methods of representation of contents of the results, like document maps. Though visually impressive, doc maps (e.g. WebSOM) are extensively resource consuming and hard to use for huge collections. In this paper, we present a novel approach, which does not require creation of a ...

متن کامل

Visual Topic Maps Layer between Document Collections and Learning Material

This paper introduces a semantic layer, called visual topic maps, to build a bridge between annotated document collections and the use of these documents as learning material. The main components of a visual classification are metadata-based topic maps attached to documents that allow customization according to users’ needs and profiles. The metadata of documents and visual topic maps are based...

متن کامل

Exploration of Text Collections with Hierarchical Feature

Document classiication is one of the central issues in information retrieval research. The aim is to uncover similarities between text documents. In other words, classiication techniques are used to gain insight in the structure of the various data items contained in the text archive. In this paper we show the results from using a hierarchy of self-organizing maps to perform the text classiicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Web Sem.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2010